莫再等闲视之!挖矿病毒其实与你近在咫尺******
近年来,由于虚拟货币的暴涨,受利益驱使,黑客也瞄准了虚拟货币市场,其利用挖矿脚本来实现流量变现,使得挖矿病毒成为不法分子利用最为频繁的攻击方式之一。
由亚信安全梳理的《2021年度挖矿病毒专题报告》(简称《报告》)显示,在过去的一年,挖矿病毒攻击事件频发,亚信安全共拦截挖矿病毒516443次。从2021年1月份开始,挖矿病毒有减少趋势,5月份开始,拦截数量逐步上升,6月份达到本年度峰值,拦截次数多达177880次。通过对数据进行分析发现,6月份出现了大量挖矿病毒变种,因此导致其数据激增。
不仅老病毒变种频繁,新病毒也层出不穷。比如,有些挖矿病毒为获得利益最大化,攻击企业云服务器;有些挖矿病毒则与僵尸网络合作,快速抢占市场;还有些挖矿病毒在自身技术上有所突破,利用多种漏洞攻击方法。不仅如此,挖矿病毒也在走创新路线,伪造CPU使用率,利用Linux内核Rootkit进行隐秘挖矿等。
从样本数据初步分析来看,截止到2021年底,一共获取到的各个家族样本总数为12477248个。其中,Malxmr家族样本总共收集了约300万个,占比高达67%,超过了整个挖矿家族收集样本数量的一半;Coinhive家族样本一共收集了约84万个,占比达到18%;Toolxmr家族样本一共收集了约64万个,占比达到14%。排名前三位的挖矿病毒占据了整个挖矿家族样本个数的99%。
挖矿病毒主要危害有哪些?
一是能源消耗大,与节能减排相悖而行。
虽然挖矿病毒单个耗电量不高,能耗感知性不强,但挖矿病毒相比于专业“挖矿”,获得同样算力价值的前提下,耗电量是后者的500倍。
二是降低能效,影响生产。
挖矿病毒最容易被感知到的影响就是机器性能会出现严重下降,影响业务系统的正常运行,严重时可能出现业务系统中断或系统崩溃。直接影响企业生产,给企业带来巨大经济损失。
三是失陷主机沦为肉鸡,构建僵尸网络。
挖矿病毒往往与僵尸网络紧密结合,在失陷主机感染挖矿病毒的同时,可能已经成为黑客控制的肉鸡电脑,黑客利用失陷主机对网内其他目标进行攻击,这些攻击包括内网横向攻击扩散、对特定目标进行DDoS攻击、作为黑客下一步攻击的跳板、将失陷主机作为分发木马的下载服务器或C&C服务器等。
四是失陷主机给企业带来经济及名誉双重损失。
失陷主机在感染挖矿病毒同时,也会被安装后门程序,远程控制软件等。这些后门程序长期隐藏在系统中,达到对失陷主机的长期控制目的,可以向主机中投放各种恶意程序,盗取服务器重要数据,使受害企业面临信息泄露风险。不仅给而企业带来经济损失,还会带来严重的名誉损失。
2021年挖矿病毒家族分布
挖矿病毒如何进入系统而最终获利?
挖矿病毒攻击杀伤链包括:侦察跟踪、武器构建、横向渗透、荷载投递、安装植入、远程控制和执行挖矿七个步骤。
通俗地说,可以这样理解:
攻击者首先搜寻目标的弱点
↓
使用漏洞和后门制作可以发送的武器载体,将武器包投递到目标机器
↓
在受害者的系统上运行利用代码,并在目标位置安装恶意软件,为攻击者建立可远程控制目标系统的路径
↓
释放挖矿程序,执行挖矿,攻击者远程完成其预期目标。
图片来源网络
挖矿病毒攻击手段不断创新,呈现哪些新趋势?
●漏洞武器和爆破工具是挖矿团伙最擅长使用的入侵武器,他们使用新漏洞武器的速度越来越快,对防御和安全响应能力提出了更高要求;
●因门罗币的匿名性极好,已经成为挖矿病毒首选货币。同时“无文件”“隐写术”等高级逃逸技术盛行,安全对抗持续升级;
●国内云产业基础设施建设快速发展,政府和企业积极上云,拥有庞大数量工业级硬件的企业云和数据中心将成为挖矿病毒重点攻击目标;
●为提高挖矿攻击成功率,一方面挖矿病毒采用了Windows和Linux双平台攻击;另一方面则持续挖掘利益最大化“矿机”,引入僵尸网络模块,使得挖矿病毒整体的攻击及传播能力得到明显的提升。
用户如何做好日常防范?
1、优化服务器配置并及时更新
开启服务器防火墙,服务只开放业务端口,关闭所有不需要的高危端口。比如,137、138、445、3389等。
关闭服务器不需要的系统服务、默认共享。
及时给服务器、操作系统、网络安全设备、常用软件安装最新的安全补丁,及时更新 Web 漏洞补丁、升级Web组件,防止漏洞被利用,防范已知病毒的攻击。
2、强口令代替弱密码
设置高复杂度密码,并定期更换,多台主机不使用同一密码。
设置服务器登录密码强度和登录次数限制。
在服务器配置登录失败处理功能,配置并启用结束会话、限制非法登录次数和当登录次数链接超时自动退出等相关防范措施。
3、增强网络安全意识
加强所有相关人员的网络安全培训,提高网络安全意识。
不随意点击来源不明的邮件、文档、链接,不要访问可能携带病毒的非法网站。
若在内部使用U盘,需要先进行病毒扫描查杀,确定无病毒后再完全打开使用。
(策划:李政葳 制作:黎梦竹)
聚焦人工智能技术前沿与治理 中外专家学者国际论坛建言献策******
中新网北京12月5日电 (记者 孙自法)2021人工智能合作与治理国际论坛“人工智能技术前沿与治理”主论坛,12月5日在清华大学以线上线下结合方式举行,中外人工智能(AI)领域专家学者聚焦人工智能技术前沿与治理这一主题,发表主旨演讲建言献策,并深入研讨交流。
美国国家科学院院士、美国艺术与科学院院士、约翰·贝茨·克拉克奖得主、斯坦福大学商学院技术经济学教授、以人为本人工智能研究所副所长苏珊·阿西(Susan Athey)认为,大学在指导人工智能创新方面可以发挥优先引导的关键作用。由于私营部门的技术人员缺乏伦理、哲学方面的训练,难以开发出具有可解释性的算法框架,深化这类研究能够在人工智能治理的问题识别、建立开发实践框架、提供指引等方面发挥重要作用。此外,由于数据可以带来巨大的规模效应,当前“软件即服务”的平台经济模式已非常普及。人工智能和数据需求可能带来“伪”市场集中,因此,未来对“机器换人”的预测非常具有挑战性,需要重新关注和思考人工智能如何用于应对老龄化等公共管理问题,使基于人工智能的公共服务变得更加高效。
国际人工智能协会前主席、清华大学人工智能国际治理研究院学术委员约兰达·吉尔(Yolanda Gil)指出,由于人类对智能机制认知不足、智能行为本身的复杂性、观测手段的有限性以及个体知识、职业、信仰、文化背景等的差异性,导致当前人工智能研究中面临着一系列挑战,因此,需要加强人工智能基础研究工作,这需要跨领域、跨学科的共同努力。当前,理解人工智能机理和构建人工智能世界模型是人工智能研究面临的两大挑战。一方面,理解人工智能机理需要构架“感知-思考-行动”的智能模型,加强对大脑思维机理的理解,建议借鉴神经科学研究联合体的有益经验,建立全球性的人工智能研究数据库,形成全球共享的研究社区。另一方面,构建人工智能世界模型则需要建立在人类经验、社会习俗、专业技能的基础上,建议建立类似于自由协作式的知识库,通过全民民众参与,推动知识在全球层面共享。
中国科学院院士、清华大学人工智能研究院名誉院长、清华大学人工智能国际治理研究院学术委员张钹表示,由于深度学习等算法存在不可解释性,导致前两代人工智能算法存在着公平性、安全性问题和不可靠、不可信等缺陷。发展第三代人工智能关键在于发展可解释的、鲁棒的人工智能理论和方法,开发安全、可信、可靠、可扩展的人工智能技术,以“数据驱动+知识驱动”构建支持可解释的人工智能算法的深度学习平台,赋能人工智能安全与防御优化。从数据中真正获取智能要靠知识的帮助与引导,并需要政策法规对数据使用的正确规范,充分利用知识、数据、算法和算力四个要素结合,推动人工智能的创新发展。
中国工程院院士、北京大学信息科学技术学院院长、鹏城实验室主任、清华大学人工智能国际治理研究院学术委员高文认为,当前人工智能发展处于新一代人工智能向强人工智能发展的关键阶段,至2030年,中国人工智能发展总体要达到世界领先水平。从战略问题看,中美欧三方在人工智能人才、研究、开发、应用、硬件、数据等方面竞争激烈,当前中国人工智能发展在战略政策、数据资源、应用场景、潜力人才方面具有优势,而在基础理论、原创算法、关键部件、国际平台、高级人才等方面还存在短板。从战术问题看,人工智能2.0需采用基于大数据的统计AI解决大规模AI应用需求,鼓励各种可能的强人工智能探索,“可解释机器学习+推理”和“仿生系统+AI大算力”是可能的技术路线图;在安全问题层面,强人工智能的安全风险主要来源于模型的不可解释性、算法和硬件的不可靠性和自主意识的不可控性,人工智能2.0应采用DPI与“防水堡技术”解决数据安全与隐私保护,重视探索人工智能伦理问题,并基于“理论-技术研究-应用”的阶段性采取不同的风险防范策略。
美国国家工程院外籍院士、英国皇家工程院外籍院士、清华大学高等研究院双聘教授沈向洋表示,AI已经应用于生活和工作的方方面面,目前甚至在法律上也具有一定的应用,比如美国已经有很多法庭用机器学习和人工智能方法帮助判刑,包括决定刑期这样非常重要的问题。但是我们还无法理解一些AI决策的缘由。未来发展过程中我们不能只看见AI决策的“黑箱”,应该打开“黑箱”,探究和理解其中的具体内容和因果关系,我们一定要做可解释性的AI。同时,他提到负责任的AI应具备公平性、可靠性、隐私性、包容性、透明性和责任性的特点,作为新兴领域,还需要向其他领域学习,从而更好的服务于人类。
中国工程院外籍院士、清华大学智能产业研究院院长、人工智能国际治理研究院学术委员张亚勤指出,“碳中和”是人类能源结构的又一次变革。“碳中和”既是可持续发展的必然选择,又是产业结构调整和发展的重大机遇。企业在“碳中和”背景下都面临转型增效的压力。人工智能+物联网是智联网,智联网可以赋能绿色计算,助力“碳中和”。智联网助力“碳中和”主要包括三个环节:首先,由数据驱动和人工智能优化引擎来实现智能决策。其次,多参数全链系统配置优化。最后,通过多源多维异构感知融合实现智能感知。智联网可用于能源融合、降低ICT产业的碳排放和推动新兴产业发展等。他还介绍了智联网赋能的绿色计算平台的框架,该平台包括人工智能驱动节能减排和高能效人工智能系统,应用路径包括绿色园区和工业节能。
2021人工智能合作与治理国际论坛由清华大学主办,清华大学人工智能国际治理研究院承办,国际支持机构为联合国开发计划署。论坛为期两天,设有三场主论坛、一场特别论坛和七场专题论坛。“人工智能技术前沿与治理”主论坛由清华大学计算机科学与技术系教授、人工智能研究院常务副院长孙茂松主持。(完)
(文图:赵筱尘 巫邓炎)